Layer potential quadrature on manifold boundary elements with constant densities for Laplace and Helmholtz kernels in ℝ^3

09/14/2023
by   Shoken Kaneko, et al.
0

A method is proposed for evaluation of single and double layer potentials of the Laplace and Helmholtz equations on piecewise smooth manifold boundary elements with constant densities. The method is based on a novel two-term decomposition of the layer potentials, derived by means of differential geometry. The first term is an integral of a differential 2-form which can be reduced to contour integrals using Stokes' theorem, while the second term is related to the element curvature. This decomposition reduces the degree of singularity and the curvature term can be further regularized by a polar coordinate transform. The method can handle singular and nearly singular integrals. Numerical results validating the accuracy of the method are presented for all combinations of single and double layer potentials, for the Laplace and Helmholtz kernels, and for singular and nearly singular integrals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset