LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain

07/12/2016
by   Zeyuan Allen-Zhu, et al.
0

We study k-SVD that is to obtain the first k singular vectors of a matrix A. Recently, a few breakthroughs have been discovered on k-SVD: Musco and Musco [1] proved the first gap-free convergence result using the block Krylov method, Shamir [2] discovered the first variance-reduction stochastic method, and Bhojanapalli et al. [3] provided the fastest O(nnz(A) + poly(1/ε))-time algorithm using alternating minimization. In this paper, we put forward a new and simple LazySVD framework to improve the above breakthroughs. This framework leads to a faster gap-free method outperforming [1], and the first accelerated and stochastic method outperforming [2]. In the O(nnz(A) + poly(1/ε)) running-time regime, LazySVD outperforms [3] in certain parameter regimes without even using alternating minimization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro