Learning a powerful SVM using piece-wise linear loss functions

02/09/2021
by   Pritam Anand, et al.
0

In this paper, we have considered general k-piece-wise linear convex loss functions in SVM model for measuring the empirical risk. The resulting k-Piece-wise Linear loss Support Vector Machine (k-PL-SVM) model is an adaptive SVM model which can learn a suitable piece-wise linear loss function according to nature of the given training set. The k-PL-SVM models are general SVM models and existing popular SVM models, like C-SVM, LS-SVM and Pin-SVM models, are their particular cases. We have performed the extensive numerical experiments with k-PL-SVM models for k = 2 and 3 and shown that they are improvement over existing SVM models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro