Learning coherences from nonequilibrium fluctuations in a quantum heat engine

02/27/2023
by   Manash Jyoti Sarmah, et al.
0

We develop an efficient machine learning protocol to predict the noise-induced coherence from the nonequilibrium fluctuations of photon exchange statistics in a quantum heat engine. The engine is a four-level quantum system coupled to a unimodal quantum cavity. The nonequilibrium fluctuations correspond to the work done during the photon exchange process between the four-level system and the cavity mode. We specifically evaluate the mean, variance, skewness, and kurtosis for a range of engine parameters using a full counting statistical approach combined with a quantum master equation technique. We use these numerically evaluated cumulants as input data to successfully predict the hot bath induced coherence. A supervised machine learning technique based on K-Nearest Neighbor(KNN) is found to work better than a variety of learning models that we tested.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro