Learning Gaussian Graphical Models Using Discriminated Hub Graphical Lasso

05/17/2017
by   Zhen Li, et al.
0

We develop a new method called Discriminated Hub Graphical Lasso (DHGL) based on Hub Graphical Lasso (HGL) by providing prior information of hubs. We apply this new method in two situations: with known hubs and without known hubs. Then we compare DHGL with HGL using several measures of performance. When some hubs are known, we can always estimate the precision matrix better via DHGL than HGL. When no hubs are known, we use Graphical Lasso (GL) to provide information of hubs and find that the performance of DHGL will always be better than HGL if correct prior information is given and will seldom degenerate when the prior information is wrong.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset