Learning partially ranked data based on graph regularization

02/28/2019
by   Kento Nakamura, et al.
0

Ranked data appear in many different applications, including voting and consumer surveys. There often exhibits a situation in which data are partially ranked. Partially ranked data is thought of as missing data. This paper addresses parameter estimation for partially ranked data under a (possibly) non-ignorable missing mechanism. We propose estimators for both complete rankings and missing mechanisms together with a simple estimation procedure. Our estimation procedure leverages a graph regularization in conjunction with the Expectation-Maximization algorithm. Our estimation procedure is theoretically guaranteed to have the convergence properties. We reduce a modeling bias by allowing a non-ignorable missing mechanism. In addition, we avoid the inherent complexity within a non-ignorable missing mechanism by introducing a graph regularization. The experimental results demonstrate that the proposed estimators work well under non-ignorable missing mechanisms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset