Learning Personal Style from Few Examples
A key task in design work is grasping the client's implicit tastes. Designers often do this based on a set of examples from the client. However, recognizing a common pattern among many intertwining variables such as color, texture, and layout and synthesizing them into a composite preference can be challenging. In this paper, we leverage the pattern recognition capability of computational models to aid in this task. We offer a set of principles for computationally learning personal style. The principles are manifested in PseudoClient, a deep learning framework that learns a computational model for personal graphic design style from only a handful of examples. In several experiments, we found that PseudoClient achieves a 79.40 negative examples, outperforming several alternative methods. Finally, we discuss how PseudoClient can be utilized as a building block to support the development of future design applications.
READ FULL TEXT