Learning to Blame: Localizing Novice Type Errors with Data-Driven Diagnosis

08/25/2017
by   Eric L. Seidel, et al.
0

Localizing type errors is challenging in languages with global type inference, as the type checker must make assumptions about what the programmer intended to do. We introduce Nate, a data-driven approach to error localization based on supervised learning. Nate analyzes a large corpus of training data -- pairs of ill-typed programs and their "fixed" versions -- to automatically learn a model of where the error is most likely to be found. Given a new ill-typed program, Nate executes the model to generate a list of potential blame assignments ranked by likelihood. We evaluate Nate by comparing its precision to the state of the art on a set of over 5,000 ill-typed OCaml programs drawn from two instances of an introductory programming course. We show that when the top-ranked blame assignment is considered, Nate's data-driven model is able to correctly predict the exact sub-expression that should be changed 72 higher than the state-of-the-art SHErrLoc tool. Furthermore, Nate's accuracy surpasses 85 consider the top three.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro