Learning to Predict More Accurate Text Instances for Scene Text Detection

11/18/2019
by   Xiaoqian Li, et al.
10

At present, multi-oriented text detection methods based on deep neural network have achieved promising performances on various benchmarks. Nevertheless, there are still some difficulties for arbitrary shape text detection, especially for a simple and proper representation of arbitrary shape text instances. In this paper, a pixel-based text detector is proposed to facilitate the representation and prediction of text instances with arbitrary shapes in a simple manner. Firstly, to alleviate the effect of the target vertex sorting and achieve the direct regression of arbitrary shape text instances, the starting-point-independent coordinates regression loss is proposed. Furthermore, to predict more accurate text instances, the text instance accuracy loss is proposed as an assistant task to refine the predicted coordinates under the guidance of IoU. To evaluate the effectiveness of our detector, extensive experiments have been carried on public benchmarks. On the ICDAR 2015 Incidental Scene Text benchmark, our method achieves 86.5 F-measure, and we obtain 84.8 results show that our method can reach state-of-the-art performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset