Linear (2,p,p)-AONTs do Exist

04/26/2018
by   Xin Wang, et al.
0

A (t,s,v)-all-or-nothing transform (AONT) is a bijective mapping defined on s-tuples over an alphabet of size v, which satisfies that if any s-t of the s outputs are given, then the values of any t inputs are completely undetermined. When t and v are fixed, to determine the maximum integer s such that a (t,s,v)-AONT exists is the main research objective. In this paper, we solve three open problems proposed in [IEEE Trans. Inform. Theory 64 (2018), 3136-3143.] and show that there do exist linear (2,p,p)-AONTs. Then for the size of the alphabet being a prime power, we give the first infinite class of linear AONTs which is better than the linear AONTs defined by Cauchy matrices. Besides, we also present a recursive construction for general AONTs and a new relationship between AONTs and orthogonal arrays.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro