Linear regression without correspondence

05/19/2017
by   Daniel Hsu, et al.
0

This article considers algorithmic and statistical aspects of linear regression when the correspondence between the covariates and the responses is unknown. First, a fully polynomial-time approximation scheme is given for the natural least squares optimization problem in any constant dimension. Next, in an average-case and noise-free setting where the responses exactly correspond to a linear function of i.i.d. draws from a standard multivariate normal distribution, an efficient algorithm based on lattice basis reduction is shown to exactly recover the unknown linear function in arbitrary dimension. Finally, lower bounds on the signal-to-noise ratio are established for approximate recovery of the unknown linear function by any estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset