ListReader: Extracting List-form Answers for Opinion Questions

10/22/2021
by   Peng Cui, et al.
0

Question answering (QA) is a high-level ability of natural language processing. Most extractive ma-chine reading comprehension models focus on factoid questions (e.g., who, when, where) and restrict the output answer as a short and continuous span in the original passage. However, in real-world scenarios, many questions are non-factoid (e.g., how, why) and their answers are organized in the list format that contains multiple non-contiguous spans. Naturally, existing extractive models are by design unable to answer such questions. To address this issue, this paper proposes ListReader, a neural ex-tractive QA model for list-form answer. In addition to learning the alignment between the question and content, we introduce a heterogeneous graph neural network to explicitly capture the associations among candidate segments. Moreover, our model adopts a co-extraction setting that can extract either span- or sentence-level answers, allowing better applicability. Two large-scale datasets of different languages are constructed to support this study. Experimental results show that our model considerably outperforms various strong baselines. Further discussions provide an intuitive understanding of how our model works and where the performance gain comes from.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset