Load Balancing and Resource Allocation in Fog-Assisted 5G Networks: An Incentive-based Game Theoretic Approach
Fog-assisted 5G Networks allow the users within the networks to execute their tasks and processes through fog nodes and cooperation among the fog nodes. As a result, the delay in task execution reduces as compared to that in case of independent task execution, where the Base Station (BS) or server is directly involved. In the practical scenario, the ability to cooperate clearly depends on the willingness of fog nodes to cooperate. Hence, in this paper, we propose an incentive-based bargaining approach which encourages the fog nodes to cooperate among themselves by receiving incentives from the end users benefitting from the cooperation. Considering the heterogenous nature of users and fog nodes based on their storage capacity, energy efficiency etc., we aim to emphasise a fair incentive mechanism which fairly and uniformly distributes the incentives from user to the participating fog nodes. The proposed incentive-based cooperative approach reduces the cost of end users as well as balances the energy consumption of fog nodes. The proposed system model addresses and models the above approaches and mathematically formulate cost models for both fog nodes and the end users in a fog-assisted 5G network.
READ FULL TEXT