Local Uncertainty Sampling for Large-Scale Multi-Class Logistic Regression
A major challenge for building statistical models in the big data era is that the available data volume may exceed the computational capability. A common approach to solve this problem is to employ a subsampled dataset that can be handled by the available computational resources. In this paper, we propose a general subsampling scheme for large-scale multi-class logistic regression, and examine the variance of the resulting estimator. We show that asymptotically, the proposed method always achieves a smaller variance than that of the uniform random sampling. Moreover, when the classes are conditional imbalanced, significant improvement over uniform sampling can be achieved. Empirical performance of the proposed method is compared to other methods on both simulated and real-world datasets, and these results match and confirm our theoretical analysis.
READ FULL TEXT