Loss-Based Variational Bayes Prediction
We propose a new method for Bayesian prediction that caters for models with a large number of parameters and is robust to model misspecification. Given a class of high-dimensional (but parametric) predictive models, this new approach constructs a posterior predictive using a variational approximation to a loss-based, or Gibbs, posterior that is directly focused on predictive accuracy. The theoretical behavior of the new prediction approach is analyzed and a form of optimality demonstrated. Applications to both simulated and empirical data using high-dimensional Bayesian neural network and autoregressive mixture models demonstrate that the approach provides more accurate results than various alternatives, including misspecified likelihood-based predictions.
READ FULL TEXT