Lung nodule segmentation via level set machine learning

10/08/2019
by   Matthew C Hancock, et al.
6

Lung cancer has the highest mortality rate of all cancers in both men and women. The algorithmic detection, characterization, and diagnosis of abnormalities found in chest CT scan images can potentially aid radiologists by providing additional medical information to consider in their assessment. Lung nodule segmentation, i.e., the algorithmic delineation of the lung nodule surface, is a fundamental component of an automated nodule analysis pipeline. We introduce an extension of the vanilla level set image segmentation method where the velocity function is learned from data via machine learning regression methods, rather than manually designed. This mitigates the tedious design process of the velocity term from the standard method. We apply the method to image volumes of lung nodules from CT scans in the publicly available LIDC dataset, obtaining an average intersection over union score of 0.7185(±0.1114).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset