Machine Learning Attack and Defense on Voltage Over-scaling-based Lightweight Authentication

07/20/2018
by   Jiliang Zhang, et al.
0

It is a challenging task to deploy lightweight security protocols in resource-constrained IoT applications. A hardware-oriented lightweight authentication protocol based on device signature generated during voltage over-scaling (VOS) was recently proposed to address this issue. VOS-based authentication employs the computation unit such as adders to generate the process variation dependent error which is combined with secret keys to create a two-factor authentication protocol. In this paper, machine learning (ML)-based modeling attacks to break such authentication is presented. We also propose a dynamic obfuscation mechanism based on keys (DOMK) for the VOS-based authentication to resist ML attacks. Experimental results show that ANN, RNN and CMA-ES can clone the challenge-response behavior of VOS-based authentication with up to 99.65 accuracy is less than 51.2 technique.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro