Making Sense of Hidden Layer Information in Deep Networks by Learning Hierarchical Targets

05/03/2015
by   Abhinav Tushar, et al.
0

This paper proposes an architecture for deep neural networks with hidden layer branches that learn targets of lower hierarchy than final layer targets. The branches provide a channel for enforcing useful information in hidden layer which helps in attaining better accuracy, both for the final layer and hidden layers. The shared layers modify their weights using the gradients of all cost functions higher than the branching layer. This model provides a flexible inference system with many levels of targets which is modular and can be used efficiently in situations requiring different levels of results according to complexity. This paper applies the idea to a text classification task on 20 Newsgroups data set with two level of hierarchical targets and a comparison is made with training without the use of hidden layer branches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset