Market Graph Clustering Via QUBO and Digital Annealing

06/18/2020
by   Seo Hong, et al.
0

Our goal is to find representative nodes of a market graph that best replicate the returns of a broader market graph (index), a common task in the financial industry. We model our reference index as a market graph and express the index tracking problem in a quadratic K-medoids form. We take advantage of a purpose built hardware architecture, the Fujitsu Digital Annealer, to circumvent the NP-hard nature of the problem and solve our formulation efficiently. In this article, we combine three separate areas of the literature, market graph models, K-medoid clustering and quadratic binary optimization modeling, to formulate the index-tracking problem as a quadratic K-medoid graph-clustering problem. Our initial results show we accurately replicate the returns of a broad market index, using only a small subset of its constituent assets. Moreover, our quadratic formulation allows us to take advantage of recent hardware advances, to overcome the NP-hard nature of the problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro