Maximizing Social Welfare in Score-Based Social Distance Games

07/11/2023
by   Robert Ganian, et al.
0

Social distance games have been extensively studied as a coalition formation model where the utilities of agents in each coalition were captured using a utility function u that took into account distances in a given social network. In this paper, we consider a non-normalized score-based definition of social distance games where the utility function u_v depends on a generic scoring vector v, which may be customized to match the specifics of each individual application scenario. As our main technical contribution, we establish the tractability of computing a welfare-maximizing partitioning of the agents into coalitions on tree-like networks, for every score-based function u_v. We provide more efficient algorithms when dealing with specific choices of u_v or simpler networks, and also extend all of these results to computing coalitions that are Nash stable or individually rational. We view these results as a further strong indication of the usefulness of the proposed score-based utility function: even on very simple networks, the problem of computing a welfare-maximizing partitioning into coalitions remains open for the originally considered canonical function u.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro