MDEAW: A Multimodal Dataset for Emotion Analysis through EDA and PPG signals from wireless wearable low-cost off-the-shelf Devices
We present MDEAW, a multimodal database consisting of Electrodermal Activity (EDA) and Photoplethysmography (PPG) signals recorded during the exams for the course taught by the teacher at Eurecat Academy, Sabadell, Barcelona in order to elicit the emotional reactions to the students in a classroom scenario. Signals from 10 students were recorded along with the students' self-assessment of their affective state after each stimulus, in terms of 6 basic emotion states. All the signals were captured using portable, wearable, wireless, low-cost, and off-the-shelf equipment that has the potential to allow the use of affective computing methods in everyday applications. A baseline for student-wise affect recognition using EDA and PPG-based features, as well as their fusion, was established through ReMECS, Fed-ReMECS, and Fed-ReMECS-U. These results indicate the prospects of using low-cost devices for affective state recognition applications. The proposed database will be made publicly available in order to allow researchers to achieve a more thorough evaluation of the suitability of these capturing devices for emotion state recognition applications.
READ FULL TEXT