MDL-motivated compression of GLM ensembles increases interpretability and retains predictive power

11/21/2016
by   Boris Hayete, et al.
0

Over the years, ensemble methods have become a staple of machine learning. Similarly, generalized linear models (GLMs) have become very popular for a wide variety of statistical inference tasks. The former have been shown to enhance out- of-sample predictive power and the latter possess easy interpretability. Recently, ensembles of GLMs have been proposed as a possibility. On the downside, this approach loses the interpretability that GLMs possess. We show that minimum description length (MDL)-motivated compression of the inferred ensembles can be used to recover interpretability without much, if any, downside to performance and illustrate on a number of standard classification data sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro