Mean value methods for solving the heat equation backwards in time
We investigate an iterative mean value method for the inverse (and highly ill-posed) problem of solving the heat equation backwards in time. Semi-group theory is used to rewrite the solution of the inverse problem as the solution of a fixed point equation for an affine operator, with linear part satisfying special functional analytical properties. We give a convergence proof for the method and obtain convergence rates for the residual. Convergence rates for the iterates are also obtained under the so called source conditions.
READ FULL TEXT