Measure theoretic results for approximation by neural networks with limited weights

04/04/2023
by   Vugar Ismailov, et al.
0

In this paper, we study approximation properties of single hidden layer neural networks with weights varying on finitely many directions and thresholds from an open interval. We obtain a necessary and at the same time sufficient measure theoretic condition for density of such networks in the space of continuous functions. Further, we prove a density result for neural networks with a specifically constructed activation function and a fixed number of neurons.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro