Measuring spatial association and testing spatial independence based on short time course data

03/29/2023
by   Divya Kappara, et al.
0

Spatial association measures for univariate static spatial data are widely used. When the data is in the form of a collection of spatial vectors with the same temporal domain of interest, we construct a measure of similarity between the regions' series, using Bergsma's correlation coefficient ρ. Due to the special properties of ρ, unlike other spatial association measures which test for spatial randomness, our statistic can account for spatial pairwise independence. We have derived the asymptotic behavior of our statistic under null (independence of the regions) and alternate cases (the regions are dependent). We explore the alternate scenario of spatial dependence further, using simulations for the SAR and SMA dependence models. Finally, we provide application to modelling and testing for the presence of spatial association in COVID-19 incidence data, by using our statistic on the residuals obtained after model fitting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset