Measuring the Instability of Fine-Tuning

02/15/2023
by   Yupei Du, et al.
0

Fine-tuning pre-trained language models on downstream tasks with varying random seeds has been shown to be unstable, especially on small datasets. Many previous studies have investigated this instability and proposed methods to mitigate it. However, most studies only used the standard deviation of performance scores (SD) as their measure, which is a narrow characterization of instability. In this paper, we analyze SD and six other measures quantifying instability at different levels of granularity. Moreover, we propose a systematic framework to evaluate the validity of these measures. Finally, we analyze the consistency and difference between different measures by reassessing existing instability mitigation methods. We hope our results will inform the development of better measurements of fine-tuning instability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset