Mechanisation of Model-theoretic Conservative Extension for HOL with Ad-hoc Overloading

01/11/2021
by   Arve Gengelbach, et al.
0

Definitions of new symbols merely abbreviate expressions in logical frameworks, and no new facts (regarding previously defined symbols) should hold because of a new definition. In Isabelle/HOL, definable symbols are types and constants. The latter may be ad-hoc overloaded, i.e. have different definitions for non-overlapping types. We prove that symbols that are independent of a new definition may keep their interpretation in a model extension. This work revises our earlier notion of model-theoretic conservative extension and generalises an earlier model construction. We obtain consistency of theories of definitions in higher-order logic (HOL) with ad-hoc overloading as a corollary. Our results are mechanised in the HOL4 theorem prover.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro