Meta-Regression Analysis of Errors in Short-Term Electricity Load Forecasting

by   Konstantin Hopf, et al.

Forecasting electricity demand plays a critical role in ensuring reliable and cost-efficient operation of the electricity supply. With the global transition to distributed renewable energy sources and the electrification of heating and transportation, accurate load forecasts become even more important. While numerous empirical studies and a handful of review articles exist, there is surprisingly little quantitative analysis of the literature, most notably none that identifies the impact of factors on forecasting performance across the entirety of empirical studies. In this article, we therefore present a Meta-Regression Analysis (MRA) that examines factors that influence the accuracy of short-term electricity load forecasts. We use data from 421 forecast models published in 59 studies. While the grid level (esp. individual vs. aggregated vs. system), the forecast granularity, and the algorithms used seem to have a significant impact on the MAPE, bibliometric data, dataset sizes, and prediction horizon show no significant effect. We found the LSTM approach and a combination of neural networks with other approaches to be the best forecasting methods. The results help practitioners and researchers to make meaningful model choices. Yet, this paper calls for further MRA in the field of load forecasting to close the blind spots in research and practice of load forecasting.


page 1

page 2

page 3

page 4


Short Term Load Forecasts of Low Voltage Demand and the Effects of Weather

Short term load forecasts will play a key role in the implementation of ...

Probabilistic Forecasting Methods for System-Level Electricity Load Forecasting

Load forecasts have become an integral part of energy security. Due to t...

Short-Term Electricity Load Forecasting Using the Temporal Fusion Transformer: Effect of Grid Hierarchies and Data Sources

Recent developments related to the energy transition pose particular cha...

Uncovering Dominant Features in Short-term Power Load Forecasting Based on Multi-source Feature

Due to the limitation of data availability, traditional power load forec...

Probabilistic Forecast-based Portfolio Optimization of Electricity Demand at Low Aggregation Levels

In the effort to achieve carbon neutrality through a decentralized elect...

A Hybrid Model for Forecasting Short-Term Electricity Demand

Currently the UK Electric market is guided by load (demand) forecasts pu...

Interpretable modeling for short- and medium-term electricity load forecasting

We consider the problem of short- and medium-term electricity load forec...

Please sign up or login with your details

Forgot password? Click here to reset