Microscopy Cell Segmentation via Convolutional LSTM Networks

05/29/2018
by   Assaf Arbelle, et al.
0

Live cell microscopy sequences exhibit complex spatial structures and complicated temporal behaviour, making their analysis a challenging task. Considering cell segmentation problem, which plays a significant role in the analysis, the spatial properties of the data can be captured using Convolutional Neural Networks (CNNs). Recent approaches show promising segmentation results using convolutional encoder-decoders such as the U-Net. Nevertheless, these methods are limited by their inability to incorporate temporal information, that can facilitate segmentation of individual touching cells or of cells that are partially visible. In order to accommodate cell dynamics we propose a novel segmentation approach which integrates Convolutional Long Short Term Memory (C-LSTM) with the U-Net. The network's unique architecture allows it to capture multi-scale, compact, spatio-temporal encoding in the C-LSTMs memory units. Promising results, surpassing the state-of-the-art, are presented. The code is freely available at: TBD

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset