Mimic-IV-ICD: A new benchmark for eXtreme MultiLabel Classification

04/27/2023
by   Thanh-Tung Nguyen, et al.
0

Clinical notes are assigned ICD codes - sets of codes for diagnoses and procedures. In the recent years, predictive machine learning models have been built for automatic ICD coding. However, there is a lack of widely accepted benchmarks for automated ICD coding models based on large-scale public EHR data. This paper proposes a public benchmark suite for ICD-10 coding using a large EHR dataset derived from MIMIC-IV, the most recent public EHR dataset. We implement and compare several popular methods for ICD coding prediction tasks to standardize data preprocessing and establish a comprehensive ICD coding benchmark dataset. This approach fosters reproducibility and model comparison, accelerating progress toward employing automated ICD coding in future studies. Furthermore, we create a new ICD-9 benchmark using MIMIC-IV data, providing more data points and a higher number of ICD codes than MIMIC-III. Our open-source code offers easy access to data processing steps, benchmark creation, and experiment replication for those with MIMIC-IV access, providing insights, guidance, and protocols to efficiently develop ICD coding models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro