MOD: Benchmark for Military Object Detection

04/28/2021
by   Xin Yi, et al.
6

Object detection is widely studied in computer vision filed. In recent years, certain representative deep learning based detection methods along with solid benchmarks are proposed, which boosts the development of related researchs. However, there is no object detection benchmark targeted at military field so far. To facilitate future military object detection research, we propose a novel, publicly available object detection benchmark in military filed called MOD, which contains 6,000 images and 17,465 labeled instances. Unlike previous benchmarks, objects in MOD contain unique challenges such as camouflage, blur, inter-class similarity, intra-class variance and complex military environment. Experiments show that under above chanllenges, existing detection methods suffer from undesirable performance. To address this issue, we propose LGA-RCNN which utilizes a loss-guided attention (LGA) module to highlight representative region of objects. Then, those highlighted local information are fused with global information for precise classification and localization. Extensive experiments on MOD validate the effectiveness of our method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset