Model-based clustering of categorical data based on the Hamming distance

12/09/2022
by   Raffaele Argiento, et al.
0

A model-based approach is developed for clustering categorical data with no natural ordering. The proposed method exploits the Hamming distance to define a family of probability mass functions to model the data. The elements of this family are then considered as kernels of a finite mixture model with unknown number of components. Conjugate Bayesian inference has been derived for the parameters of the Hamming distribution model. The mixture is framed in a Bayesian nonparametric setting and a transdimensional blocked Gibbs sampler is developed to provide full Bayesian inference on the number of clusters, their structure and the group-specific parameters, facilitating the computation with respect to customary reversible jump algorithms. The proposed model encompasses a parsimonious latent class model as a special case, when the number of components is fixed. Model performances are assessed via a simulation study and reference datasets, showing improvements in clustering recovery over existing approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset