Model order reduction for bifurcating phenomena in Fluid-Structure Interaction problems
This work explores the development and the analysis of an efficient reduced order model for the study of a bifurcating phenomenon, known as the Coandă effect, in a multi-physics setting involving fluid and solid media. Taking into consideration a Fluid-Structure Interaction problem, we aim at generalizing previous works towards a more reliable description of the physics involved. In particular, we provide several insights on how the introduction of an elastic structure influences the bifurcating behaviour. We have addressed the computational burden by developing a reduced order branch-wise algorithm based on a monolithic Proper Orthogonal Decomposition. We compared different constitutive relations for the solid, and we observed that a nonlinear hyper-elastic law delays the bifurcation w.r.t. the standard model, while the same effect is even magnified when considering linear elastic solid.
READ FULL TEXT