Modeling and Simulation of Practical Quantum Secure Communication Network
As the Quantum Key Distribution (QKD) technology supporting the pointto-point application matures, the need to build the Quantum Secure Communication Network (QSCN) to guarantee the security of a large scale of nodes becomes urgent. Considering the project time and expense control, it is the first choice to build the QSCN based on an existing classical network. Suitable modeling and simulation are very important to construct a QSCN successfully and efficiently. In this paper, a practical QSCN model, which can reflect the network state well, is proposed. The model considers the volatile traffic demand of the classical network and the real key generation capability of the QKD devices, which can enhance the accuracy of simulation to a great extent. In addition, two unique QSCN performance indicators, ITS (information-theoretic secure) communication capability and ITS communication efficiency, are proposed in the model, which are necessary supplements for the evaluation of a QSCN except for those traditional performance indicators of classical networks. Finally, the accuracy of the proposed QSCN model and the necessity of the proposed performance indicators are verified by plentiful simulations results.
READ FULL TEXT