Modeling Symmetric Positive Definite Matrices with An Application to Functional Brain Connectivity

07/08/2019
by   Zhenhua Lin, et al.
0

In neuroscience, functional brain connectivity describes the connectivity between brain regions that share functional properties. Neuroscientists often characterize it by a time series of covariance matrices between functional measurements of distributed neuron areas. An effective statistical model for functional connectivity and its changes over time is critical for better understanding the mechanisms of brain and various neurological diseases. To this end, we propose a matrix-log mean model with an additive heterogeneous noise for modeling random symmetric positive definite matrices that lie in a Riemannian manifold. The heterogeneity of error terms is introduced specifically to capture the curved nature of the manifold. We then propose to use the local scan statistics to detect change patterns in the functional connectivity. Theoretically, we show that our procedure can recover all change points consistently. Simulation studies and an application to the Human Connectome Project lend further support to the proposed methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset