ModGNN: Expert Policy Approximation in Multi-Agent Systems with a Modular Graph Neural Network Architecture

03/24/2021
by   Ryan Kortvelesy, et al.
6

Recent work in the multi-agent domain has shown the promise of Graph Neural Networks (GNNs) to learn complex coordination strategies. However, most current approaches use minor variants of a Graph Convolutional Network (GCN), which applies a convolution to the communication graph formed by the multi-agent system. In this paper, we investigate whether the performance and generalization of GCNs can be improved upon. We introduce ModGNN, a decentralized framework which serves as a generalization of GCNs, providing more flexibility. To test our hypothesis, we evaluate an implementation of ModGNN against several baselines in the multi-agent flocking problem. We perform an ablation analysis to show that the most important component of our framework is one that does not exist in a GCN. By varying the number of agents, we also demonstrate that an application-agnostic implementation of ModGNN possesses an improved ability to generalize to new environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro