Mortar coupling of hp-discontinuous Galerkin and boundary element methods for the Helmholtz equation

05/13/2021
by   Christoph Erath, et al.
0

We design and analyze a coupling of a discontinuous Galerkin finite element method with a boundary element method to solve the Helmholtz equation with variable coefficients in three dimensions. The coupling is realized with a mortar variable that is related to an impedance trace on a smooth interface. The method obtained has a block structure with nonsingular subblocks. We prove quasi-optimality of the h- and p-versions of the scheme, under a threshold condition on the approximability properties of the discrete spaces. Amongst others, an essential tool in the analysis is a novel discontinuous-to-continuous reconstruction operator on tetrahedral meshes with curved faces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro