MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark

08/21/2020
by   Haoran Li, et al.
0

Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Even though few datasets are available, they suffer from many shortcomings: a) they contain few languages and small amounts of labeled data for other languages b) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3% on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we also demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro