Multi-Channel Masking with Learnable Filterbank for Sound Source Separation

03/14/2023
by   Wang Dai, et al.
0

This work proposes a learnable filterbank based on a multi-channel masking framework for multi-channel source separation. The learnable filterbank is a 1D Conv layer, which transforms the raw waveform into a 2D representation. In contrast to the conventional single-channel masking method, we estimate a mask for each individual microphone channel. The estimated masks are then applied to the transformed waveform representation like in the traditional filter-and-sum beamforming operation. Specifically, each mask is used to multiply the corresponding channel's 2D representation, and the masked output of all channels are then summed. At last, a 1D transposed Conv layer is used to convert the summed masked signal into the waveform domain. The experimental results show our method outperforms single-channel masking with a learnable filterbank and can outperform multi-channel complex masking with STFT complex spectrum in the STGCSEN model if a learnable filterbank is transformed to a higher feature dimension. The spatial response analysis also verifies that multi-channel masking in the learnable filterbank domain has spatial selectivity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro