Multi-channel Multi-frame ADL-MVDR for Target Speech Separation
Many purely neural network based speech separation approaches have been proposed that greatly improve objective assessment scores, but they often introduce nonlinear distortions that are harmful to automatic speech recognition (ASR). Minimum variance distortionless response (MVDR) filters strive to remove nonlinear distortions, however, these approaches either are not optimal for removing residual (linear) noise, or they are unstable when used jointly with neural networks. In this study, we propose a multi-channel multi-frame (MCMF) all deep learning (ADL)-MVDR approach for target speech separation, which extends our preliminary multi-channel ADL-MVDR approach. The MCMF ADL-MVDR handles different numbers of microphone channels in one framework, where it addresses linear and nonlinear distortions. Spatio-temporal cross correlations are also fully utilized in the proposed approach. The proposed system is evaluated using a Mandarin audio-visual corpora and is compared with several state-of-the-art approaches. Experimental results demonstrate the superiority of our proposed framework under different scenarios and across several objective evaluation metrics, including ASR performance.
READ FULL TEXT