Multi-GPU thermal lattice Boltzmann simulations using OpenACC and MPI

11/06/2022
by   Ao Xu, et al.
0

We assess the performance of the hybrid Open Accelerator (OpenACC) and Message Passing Interface (MPI) approach for multi-graphics processing units (GPUs) accelerated thermal lattice Boltzmann (LB) simulation. The OpenACC accelerates computation on a single GPU, and the MPI synchronizes the information between multiple GPUs. With a single GPU, the two-dimension (2D) simulation achieved 1.93 billion lattice updates per second (GLUPS) with a grid number of 8193^2, and the three-dimension (3D) simulation achieved 1.04 GLUPS with a grid number of 385^3, which is more than 76 theoretical maximum performance. On multi-GPUs, we adopt block partitioning, overlapping communications with computations, and concurrent computation to optimize parallel efficiency. We show that in the strong scaling test, using 16 GPUs, the 2D simulation achieved 30.42 GLUPS and the 3D simulation achieved 14.52 GLUPS. In the weak scaling test, the parallel efficiency remains above 99 management, the hybrid OpenACC and MPI technique is promising for thermal LB simulation on multi-GPUs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset