Multi-modal Aggregation Network for Fast MR Imaging
Magnetic resonance (MR) imaging is a commonly used scanning technique for disease detection, diagnosis and treatment monitoring. Although it is able to produce detailed images of organs and tissues with better contrast, it suffers from a long acquisition time, which makes the image quality vulnerable to say motion artifacts. Recently, many approaches have been developed to reconstruct full-sampled images from partially observed measurements in order to accelerate MR imaging. However, most of these efforts focus on reconstruction over a single modality or simple fusion of multiple modalities, neglecting the discovery of correlation knowledge at different feature level. In this work, we propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality, with which to hierarchically guide the reconstruction of a given target modality. In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network. Then, a guided attention module is introduced in each convolutional stage to selectively aggregate multi-modal features for better reconstruction, yielding comprehensive, multi-scale, multi-modal feature fusion. Moreover, our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the k-space domain as well as restore the image details from the image domain. Extensive experiments demonstrate the superiority of the proposed approach over state-of-the-art MR image reconstruction methods.
READ FULL TEXT