Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition

01/05/2018
by   Jianshu Zhang, et al.
0

Handwritten mathematical expression recognition is a challenging problem due to the complicated two-dimensional structures, ambiguous handwriting input and variant scales of handwritten math symbols. To settle this problem, we utilize the attention based encoder-decoder model that recognizes mathematical expression images from two-dimensional layouts to one-dimensional LaTeX strings. We improve the encoder by employing densely connected convolutional networks as they can strengthen feature extraction and facilitate gradient propagation especially on a small training set. We also present a novel multi-scale attention model which is employed to deal with the recognition of math symbols in different scales and save the fine-grained details that will be dropped by pooling operations. Validated on the CROHME competition task, the proposed method significantly outperforms the state-of-the-art methods with an expression recognition accuracy of 52.8 2016, by only using the official training dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset