Multi-scale Convolutional Neural Networks for Crowd Counting

02/08/2017
by   Lingke Zeng, et al.
0

Crowd counting on static images is a challenging problem due to scale variations. Recently deep neural networks have been shown to be effective in this task. However, existing neural-networks-based methods often use the multi-column or multi-network model to extract the scale-relevant features, which is more complicated for optimization and computation wasting. To this end, we propose a novel multi-scale convolutional neural network (MSCNN) for single image crowd counting. Based on the multi-scale blobs, the network is able to generate scale-relevant features for higher crowd counting performances in a single-column architecture, which is both accuracy and cost effective for practical applications. Complemental results show that our method outperforms the state-of-the-art methods on both accuracy and robustness with far less number of parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro