Multi-scale Geometry-aware Transformer for 3D Point Cloud Classification

04/12/2023
by   Xian Wei, et al.
0

Self-attention modules have demonstrated remarkable capabilities in capturing long-range relationships and improving the performance of point cloud tasks. However, point cloud objects are typically characterized by complex, disordered, and non-Euclidean spatial structures with multiple scales, and their behavior is often dynamic and unpredictable. The current self-attention modules mostly rely on dot product multiplication and dimension alignment among query-key-value features, which cannot adequately capture the multi-scale non-Euclidean structures of point cloud objects. To address these problems, this paper proposes a self-attention plug-in module with its variants, Multi-scale Geometry-aware Transformer (MGT). MGT processes point cloud data with multi-scale local and global geometric information in the following three aspects. At first, the MGT divides point cloud data into patches with multiple scales. Secondly, a local feature extractor based on sphere mapping is proposed to explore the geometry inner each patch and generate a fixed-length representation for each patch. Thirdly, the fixed-length representations are fed into a novel geodesic-based self-attention to capture the global non-Euclidean geometry between patches. Finally, all the modules are integrated into the framework of MGT with an end-to-end training scheme. Experimental results demonstrate that the MGT vastly increases the capability of capturing multi-scale geometry using the self-attention mechanism and achieves strong competitive performance on mainstream point cloud benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro