Multi-scale Sampling and Aggregation Network For High Dynamic Range Imaging

08/04/2022
by   Jun Xiao, et al.
0

High dynamic range (HDR) imaging is a fundamental problem in image processing, which aims to generate well-exposed images, even in the presence of varying illumination in the scenes. In recent years, multi-exposure fusion methods have achieved remarkable results, which merge multiple low dynamic range (LDR) images, captured with different exposures, to generate corresponding HDR images. However, synthesizing HDR images in dynamic scenes is still challenging and in high demand. There are two challenges in producing HDR images: 1). Object motion between LDR images can easily cause undesirable ghosting artifacts in the generated results. 2). Under and overexposed regions often contain distorted image content, because of insufficient compensation for these regions in the merging stage. In this paper, we propose a multi-scale sampling and aggregation network for HDR imaging in dynamic scenes. To effectively alleviate the problems caused by small and large motions, our method implicitly aligns LDR images by sampling and aggregating high-correspondence features in a coarse-to-fine manner. Furthermore, we propose a densely connected network based on discrete wavelet transform for performance improvement, which decomposes the input into several non-overlapping frequency subbands and adaptively performs compensation in the wavelet domain. Experiments show that our proposed method can achieve state-of-the-art performances under diverse scenes, compared to other promising HDR imaging methods. In addition, the HDR images generated by our method contain cleaner and more detailed content, with fewer distortions, leading to better visual quality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset