Multi-Task and Transfer Learning for Federated Learning Applications

07/17/2022
by   Cihat Keçeci, et al.
0

Federated learning enables many applications benefiting distributed and private datasets of a large number of potential data-holding clients. However, different clients usually have their own particular objectives in terms of the tasks to be learned from the data. So, supporting federated learning with meta-learning tools such as multi-task learning and transfer learning will help enlarge the set of potential applications of federated learning by letting clients of different but related tasks share task-agnostic models that can be then further updated and tailored by each individual client for its particular task. In a federated multi-task learning problem, the trained deep neural network model should be fine-tuned for the respective objective of each client while sharing some parameters for more generalizability. We propose to train a deep neural network model with more generalized layers closer to the input and more personalized layers to the output. We achieve that by introducing layer types such as pre-trained, common, task-specific, and personal layers. We provide simulation results to highlight particular scenarios in which meta-learning-based federated learning proves to be useful.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro