Multi-View Pre-Trained Model for Code Vulnerability Identification

08/10/2022
by   Xuxiang Jiang, et al.
4

Vulnerability identification is crucial for cyber security in the software-related industry. Early identification methods require significant manual efforts in crafting features or annotating vulnerable code. Although the recent pre-trained models alleviate this issue, they overlook the multiple rich structural information contained in the code itself. In this paper, we propose a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and multi-type structural information of the source code and uses contrastive learning to enhance code representations. The experiments conducted on two public datasets demonstrate the superiority of MV-PTM. In particular, MV-PTM improves GraphCodeBERT by 3.36% on average in terms of F1 score.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro