Multi-view registration of unordered range scans by fast correspondence propagation of multi-scale descriptors

04/21/2018
by   Jihua Zhu, et al.
0

This paper proposes a global approach for the multi-view registration of unordered range scans. As the basis of multi-view registration, pair-wise registration is very pivotal. Therefore, we first select a good descriptor and accelerate its correspondence propagation for the pair-wise registration. Then, we design an effective rule to judge the reliability of pair-wise registration results. Subsequently, we propose a model augmentation method, which can utilize reliable results of pair-wise registration to augment the model shape. Finally, multi-view registration can be accomplished by operating the pair-wise registration and judgment, and model augmentation alternately. Experimental results on public available data sets show, that this approach can automatically achieve the multi-view registration of unordered range scans with good accuracy and effectiveness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro