Multidimensional adaptive order GP-WENO via kernel-based reconstruction

04/07/2023
by   Ian May, et al.
0

This paper presents a fully multidimensional kernel-based reconstruction scheme for finite volume methods applied to systems of hyperbolic conservation laws, with a particular emphasis on the compressible Euler equations. Non-oscillatory reconstruction is achieved through an adaptive order weighted essentially non-oscillatory (WENO-AO) method cast into a form suited to multidimensional stencils and reconstruction. A kernel-based approach inspired by Gaussian process (GP) modeling is presented here. This approach allows the creation of a scheme of arbitrary order with simply defined multidimensional stencils and substencils. Furthermore, the fully multidimensional nature of the reconstruction allows a more straightforward extension to higher spatial dimensions and removes the need for complicated boundary conditions on intermediate quantities in modified dimension-by-dimension methods. In addition, a new simple-yet-effective set of reconstruction variables is introduced, as well as an easy-to-implement effective limiter for positivity preservation, both of which could be useful in existing schemes with little modification. The proposed scheme is applied to a suite of stringent and informative benchmark problems to demonstrate its efficacy and utility.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset